
Further Graphics
Improved ray casting

Generalized Implicit Surfaces

Left: “Cornell Box” by Steven Parker, University of Utah.

A tera-ray monte-carlo rendering of the Cornell Box, generated in 2 CPU years on an Origin 2000. The full 
image contains 2048 x 2048 pixels with over 100,000 primary rays per pixel (317 x 317 jittered samples). 
Over one trillion rays were traced in the generation of this image. 

Right: Animated polygonization of two metaballs dynamically generating an implicit surface at 5 levels of 
octree recursion (~3200 polygons per frame) 1
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Great for…
● Collision detection between scene 

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization 
method for ray-based rendering 
is the use of bounding volumes.

Nested bounding volumes 
allow the rapid culling of large 
portions of geometry

● Test against the bounding 
volume of the top of the scene 
graph and then work down.
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Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit 
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders 
● common in early FPS games
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Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.

● Pro: Rays can skip 
subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object
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Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.

● Pro: The ray can skip empty 
cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty cells

● Popular for voxelized games 
(ex: Minecraft)
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The BSP tree pre-partitions the scene 
into objects in front of, on, and behind 
a tree of planes.
● This gives an ordering in which to test 

scene objects against your ray
● When you fire a ray into the scene, you 

test all near-side objects before testing 
far-side objects.

Challenges: 
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees
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Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)
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Implicit surfaces 
Implicit surface modeling(1) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface 
modelling:
● Organic forms and nonlinear 

shapes
● Scientific modeling (electron 

orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force 
functions”, “blobby modeling”… 9



Terminology
Isoclines Isosurfaces

Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller
Illumination-Driven Opacity Modulation for Expressive Volume 
Rendering, Proceedings of Vision, Modeling & Visualization 2012, 
pages 103-109. November 2012.

Grand Cayon Quadrangle
Arizona-Coconino Co.
7.5 minute series (topographic)
Courtesy of National Park Maps (npmaps.com) 10

https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
http://npmaps.com/wp-content/uploads/grand-canyon-south-rim-west-topo-map.jpg


Implicit surface modeling
The user controls a set of control points or primitives. Each point 

generates a field of force, which drops off as a function of distance 
from the point (like gravity weakening with distance.)  

F(r) = “The force at distance r”
For any real value ᶦ, the set of all points in space where the sum of forces 

equals ᶦ is an isosurface: an implicit surface.
S = {x∊ℝ3 | ∑pF(|xp|) = ᶦ}

...or, more prosaically, solve:
∑pF(|xp|) - ᶦ = 0

Force = 2

1
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A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0   ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3  ≤ r < b
  0 b   ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions
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Comparison of force functions
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Rendering implicit surfaces

Several choices:
1. Render the surface directly to the GPU 

+: Realtime lighting, smooth surfaces, looks great
-: Hard to integrate with other objects in scene
-: Solve the “intercept surface with ray” problem

2. Convert the surface into a mesh of connected polygons, 
approximating the surface to a fixed level of precision 
(“polygon soup”)
+: Mesh can be manipulated, interact with scene
-: Costly setup costs or runtime framerate hit
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Rendering implicit surfaces
with Signed Distance Fields

Blynn’s metaballs force function is a piecewise 
Polynomial:

  a(1- 3r2 / b2)   0   ≤ r < b/
3

F(r) =   (3a/2)(1-r/b)2   b/
3
  ≤ r < b

  0   b   ≤ r

GLSL: 

float getMetaball(vec3 p, vec3 v) {
    float r = length(p - v);
    if (r < b / 3.0) {
        return a * (1.0 - 3.0 * r * r / b * b);
    } else if (r < b) {
        return (3.0 * a / 2.0) * (1.0 - r / b) * (1.0 - r / b);
    } else {
        return 0.0;
    }
}
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Rendering implicit surfaces
with Signed Distance Fields

Let’s use Blynn’s constants: a=1, b=3
We want to be able to answer the question, “if 
F < 0.5, then we’re outside the surface.  What 
is the minimum distance from our current 
position to F=0.5?”

F = (3a/2)(1-r/b)2

  = (3/2)(1-r/3)2

r2 - 6r + (9-6F) = 0
r = 3±√(6F)

The square roots yield ± values, but we can 
discard the half of the polynomial whose r 
value is >b, leaving us with simply:

r = 3-√(6F)

r = 3-√3

Solve for F = 0.5 
→ r = 3-√3 = 1.2679529
Insight: if we restrict ourselves to 
metaballs of weight 1, then only 
Blynn’s second polynomial applies 
outside the isosurface of F=0.5
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Rendering implicit surfaces
with Signed Distance Fields

float sdImplicitSurface(vec3 p) {
  float mb = getMetaball(p, BallA) + getMetaball(p, BallB);
  float minDist = min(length(p - BallA), length(p - BallB));

  // 1.2679529 is the x-intercept of the metaball expression 
  // when force = 0.5
  float r = 1.2679529;

  float d;
  if (minDist > 3 /* b=3 */) {
    return max(minDist - 3, 3 - r);
  } else {
    return 3 - sqrt(6.0 * mb)- r;
  }
}

https://www.shadertoy.com/view/XltyWs 
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Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018). 
Isovox: A Brick-Octree Approach to Indirect Visualization

Rendering implicit surfaces with polygons

An octree is a recursive subdivision of space 
which “homes in” on the surface, from larger to 
finer detail.  
● An octree encloses a cubical volume in space.  

You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.
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Polygonizing the surface

To display a set of octrees, convert the octrees 
into polygons.

● If some corners are “hot” (above the force limit) 
and others are “cold” (below the force limit) then 
the isosurface must cross the cube edges in 
between.

● The set of midpoints of adjacent crossed edges 
forms one or more rings, which can be 
triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonization, subdivide 
recursively; discard any child whose vertices 
are all hot or all cold.
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Polygonizing the surface

Recursive subdivision (on a quadtree):
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Polygonizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed separately.  ↓

Images courtesy of Diane Lingrand
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http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html


Polygonizing the surface

One way to overcome the ambiguities 
that arise with the cube method is to 
decompose the cube into tretrahedra.

● A common decomposition is into 
five tetrahedra. →

● Caveat: need to flip every other 
cube.  (Why?)

● Can also split into six.
Another way is to do the subdivision 

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden
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http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube


Smoothing the polygonization

Improved edge vertices
● The naïve implementation builds polygons whose vertices are the midpoints 

of the edges which lie between hot and cold vertices.
● The vertices of the implicit surface can be more closely approximated by 

points linearly interpolated along the edges of the cube by the weights of the 
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same force points 23



Marching cubes
An alternative to octrees if you only want 
to compute the final stage is the marching 
cubes algorithm (Lorensen & Cline, 1985):
● Fire a ray from any point known to be 

inside the surface.
● Using Newton’s method or binary search, 

find where the ray crosses the surface. 
● Newton: derivative estimated from discrete 

local sampling
● There may be many crossings

● Drop a cube around the intersection point: 
it will have some vertices hot, some cold.

● While there exists a cube which has at least 
one hot vertex and at least one cold vertex 
on a side and no neighbor on that side, 
create a neighboring cube on that side.  
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in 
1984, modeling a human spine.
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