
Further Graphics
Improved ray casting

Generalized Implicit Surfaces

Left: “Cornell Box” by Steven Parker, University of Utah.

A tera-ray monte-carlo rendering of the Cornell Box, generated in 2 CPU years on an Origin 2000. The full
image contains 2048 x 2048 pixels with over 100,000 primary rays per pixel (317 x 317 jittered samples).
Over one trillion rays were traced in the generation of this image.

Right: Animated polygonization of two metaballs dynamically generating an implicit surface at 5 levels of
octree recursion (~3200 polygons per frame) 1

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization
method for ray-based rendering
is the use of bounding volumes.

Nested bounding volumes
allow the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

2

Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders
● common in early FPS games

3

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

● Pro: Rays can skip
subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

4

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.

● Pro: The ray can skip empty
cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty cells

● Popular for voxelized games
(ex: Minecraft)

5

The BSP tree pre-partitions the scene
into objects in front of, on, and behind
a tree of planes.
● This gives an ordering in which to test

scene objects against your ray
● When you fire a ray into the scene, you

test all near-side objects before testing
far-side objects.

Challenges:
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

6

A B

C D E F

A

B

C
E

F
D

Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

7

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

8

Implicit surfaces
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”… 9

Terminology
Isoclines Isosurfaces

Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller
Illumination-Driven Opacity Modulation for Expressive Volume
Rendering, Proceedings of Vision, Modeling & Visualization 2012,
pages 103-109. November 2012.

Grand Cayon Quadrangle
Arizona-Coconino Co.
7.5 minute series (topographic)
Courtesy of National Park Maps (npmaps.com) 10

https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/
http://npmaps.com/wp-content/uploads/grand-canyon-south-rim-west-topo-map.jpg

Implicit surface modeling
The user controls a set of control points or primitives. Each point

generates a field of force, which drops off as a function of distance
from the point (like gravity weakening with distance.)

F(r) = “The force at distance r”
For any real value ᶦ, the set of all points in space where the sum of forces

equals ᶦ is an isosurface: an implicit surface.
S = {x∊ℝ3 | ∑pF(|xp|) = ᶦ}

...or, more prosaically, solve:
∑pF(|xp|) - ᶦ = 0

Force = 2

1

0.5

0.25 ... 11

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions

12

Comparison of force functions

13

Rendering implicit surfaces

Several choices:
1. Render the surface directly to the GPU

+: Realtime lighting, smooth surfaces, looks great
-: Hard to integrate with other objects in scene
-: Solve the “intercept surface with ray” problem

2. Convert the surface into a mesh of connected polygons,
approximating the surface to a fixed level of precision
(“polygon soup”)
+: Mesh can be manipulated, interact with scene
-: Costly setup costs or runtime framerate hit

14

Rendering implicit surfaces
with Signed Distance Fields

Blynn’s metaballs force function is a piecewise
Polynomial:

 a(1- 3r2 / b2) 0 ≤ r < b/
3

F(r) = (3a/2)(1-r/b)2 b/
3
 ≤ r < b

 0 b ≤ r

GLSL:

float getMetaball(vec3 p, vec3 v) {
 float r = length(p - v);
 if (r < b / 3.0) {
 return a * (1.0 - 3.0 * r * r / b * b);
 } else if (r < b) {
 return (3.0 * a / 2.0) * (1.0 - r / b) * (1.0 - r / b);
 } else {
 return 0.0;
 }
}

15

Rendering implicit surfaces
with Signed Distance Fields

Let’s use Blynn’s constants: a=1, b=3
We want to be able to answer the question, “if
F < 0.5, then we’re outside the surface. What
is the minimum distance from our current
position to F=0.5?”

F = (3a/2)(1-r/b)2

 = (3/2)(1-r/3)2

r2 - 6r + (9-6F) = 0
r = 3±√(6F)

The square roots yield ± values, but we can
discard the half of the polynomial whose r
value is >b, leaving us with simply:

r = 3-√(6F)

r = 3-√3

Solve for F = 0.5
→ r = 3-√3 = 1.2679529
Insight: if we restrict ourselves to
metaballs of weight 1, then only
Blynn’s second polynomial applies
outside the isosurface of F=0.5

16

Rendering implicit surfaces
with Signed Distance Fields

float sdImplicitSurface(vec3 p) {
 float mb = getMetaball(p, BallA) + getMetaball(p, BallB);
 float minDist = min(length(p - BallA), length(p - BallB));

 // 1.2679529 is the x-intercept of the metaball expression
 // when force = 0.5
 float r = 1.2679529;

 float d;
 if (minDist > 3 /* b=3 */) {
 return max(minDist - 3, 3 - r);
 } else {
 return 3 - sqrt(6.0 * mb)- r;
 }
}

https://www.shadertoy.com/view/XltyWs
17

https://www.shadertoy.com/view/XltyWs

Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018).
Isovox: A Brick-Octree Approach to Indirect Visualization

Rendering implicit surfaces with polygons

An octree is a recursive subdivision of space
which “homes in” on the surface, from larger to
finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

18

Polygonizing the surface

To display a set of octrees, convert the octrees
into polygons.

● If some corners are “hot” (above the force limit)
and others are “cold” (below the force limit) then
the isosurface must cross the cube edges in
between.

● The set of midpoints of adjacent crossed edges
forms one or more rings, which can be
triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide
recursively; discard any child whose vertices
are all hot or all cold.

19

Polygonizing the surface

Recursive subdivision (on a quadtree):

20

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

21

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Polygonizing the surface

One way to overcome the ambiguities
that arise with the cube method is to
decompose the cube into tretrahedra.

● A common decomposition is into
five tetrahedra. →

● Caveat: need to flip every other
cube. (Why?)

● Can also split into six.
Another way is to do the subdivision

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden

22

http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube

Smoothing the polygonization

Improved edge vertices
● The naïve implementation builds polygons whose vertices are the midpoints

of the edges which lie between hot and cold vertices.
● The vertices of the implicit surface can be more closely approximated by

points linearly interpolated along the edges of the cube by the weights of the
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same force points 23

Marching cubes
An alternative to octrees if you only want
to compute the final stage is the marching
cubes algorithm (Lorensen & Cline, 1985):
● Fire a ray from any point known to be

inside the surface.
● Using Newton’s method or binary search,

find where the ray crosses the surface.
● Newton: derivative estimated from discrete

local sampling
● There may be many crossings

● Drop a cube around the intersection point:
it will have some vertices hot, some cold.

● While there exists a cube which has at least
one hot vertex and at least one cold vertex
on a side and no neighbor on that side,
create a neighboring cube on that side.
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in
1984, modeling a human spine.

24

References
Implicit modelling:
D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design,

Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG

Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4

1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

25

http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

